Recently, I unearthed a well-used copy of *Schools, Kids, Teachers, Things and What To Do* written by the late Bruce Wicking, an educational pioneer who, in the 1970’s, conducted an exciting and innovative classroom called “The Pottery” as an annex to Glamorgan of Geelong Grammar School in Victoria. The first chapter opened with “some generalizations - not all rash”, the last being most appropriate for this newsletter. Reforms are only possible when the ‘classroom’ teachers are determined to implement them, no matter what the opposition. Opposition is overcome and doubts are most swiftly dissolved when a teacher has ground out for himself* a coherent philosophy, when he knows why he wants to make changes and when he can explain how he is going to do it, ... that change is being made so as to benefit each child, not merely because it is the trendy thing to do. (*Please note that Bruce is talking about all teachers.)

That children can and do need to enjoy a vital and stimulating mathematical experience is unarguable. Our greatest reform is to ensure that the mathematical experiences we share with the children in our classes are both enjoyable and stimulating, not only for them but for ourselves, also. Then, fun will take on a new meaning.

Look what I discovered in the Target video shop: *Donald in Mathmagicland*. I saw this wonderful (and humorous!) Disney cartoon in my high school days. While I advise that this videotape is not for public broadcasting, you would do well to obtain a copy and become inspired at the broad mathematical picture introduced by Donald Duck.

His death two years ago caused me to reflect about the influence this modest, self-effacing person had on my teaching career and life. I met him first in a book called *Teaching as a Subversive Activity* (1969) in which the first chapter is headed *Crap Detecting*. Belying the possible initial reaction to the title of the book, the main theme is dedicated to fostering the art and science of asking vital questions. Later I discovered a booklet called *How to Recognise a Good School* (Postman and Weingartner, 1973). Today, the words are as refreshing, challenging and as “spot-on” as they were thirty years ago. If you would like to read this article please contact Karen for a copy.

In his 1995 book, *The End of Education: Redefining the Value of School*, one of his most telling comments for me appears in the last pages: (our) “culture is not presently organized to promote the idea of childhood; and without that idea schooling loses much of its point.” When you see this, you are on a change pathway.
It is not difficult to encourage thinking skills

I understand the difficulties in introducing a “thinking” aspect into your teaching of mathematics. We have been conditioned to apply a set of rules to a situation in order to obtain a certain result or answer. In our mathematics learning, how many of us relied on the answers at the back of the text to get us through? In stark contrast, the use of “thinking” teaching materials provides a catalyst for exploration of new ideas, both to the teacher and to the learner. I have used these teaching materials for more than thirty years and I am constantly amazed at the amount of original thought, taxing challenges and “aha” results the learners experience as they manipulate the materials to meet their thinking needs.

Even more exciting, is to see these ideas and patterns of thinking used in areas of learning other than mathematics. The students have gained confidence to think, to use language and to work out a sensible meaning. So, I see learning benefits for all students emerging when you develop a thinking program in your classroom.

But, beware! Do not spoil the students’ developing thinking patterns by inflicting a rigid recording regime. Generally, it is quite late in the primary school experience when formal recording becomes genuinely meaningful to the learner.

Benezet’s experiment

Around 1930, Louis Benezet, a School Superintendent in New Hampshire (USA) conducted a most amazing experiment over a period of years. Benezet stated, it seems to me that we waste much time in the elementary schools wrestling with stuff that ought to be omitted or postponed until the children are in need of studying it.

If I had my way, I would omit arithmetic from the first six grades. . . . I will not spoil the story. Type benezet centre into Google and discover the full details for yourself. Can’t do that; then contact MLATS for a copy which was downloaded from the www. We have a lot to learn from a careful reading of this story.

Mathsemantics

In more recent times, Edward MacNeal presented Mathsemantics: Making Numbers Talk (1994) where he proposed that one of the major difficulties in learning mathematics is the confusing relationship between school maths and what all that really means. MacNeal tested all his prospective employees and their results may astound you! The test is presented in this book—have a go at it and maybe your results will too. A search under www.mathsemantics.com will provide more details.

Perhaps the greatest strength to be gained from applying a wide range of thinking encouragement materials is the development of free and wide-ranging language skills. These skills are applied naturally to day-to-day activities, especially discussions. Children are not afraid to experiment with language. Parents have shared with me their delight as children have happily demonstrated their thinking language skills at home.

This inspired me to provide a “different” form of homework. For example, I encouraged many children to take home a small set of materials to “teach” Mum and Dad what to do with them. This broke down many of the traditional barriers between school and home that we teachers experience. Having being taught by the children a thinking procedure, parents were encouraged to create problems for their son or daughter to bring to school. Of course, this did not work every time, but results were encouraging and the idea was worth maintaining.

The thinking classroom does not just occur during the mathematics lesson. It is a continuous process: thinking floods over into all facets of classroom life.

Mathematical success in the classroom depends on all-round health

Coupled with this idea is a most important aspect of child development, especially in the junior school: Physical (kinaesthetic) development! I am convinced that there is a close and vital link between mental development and sound physical maturation. In recent times, this idea was manifested by the Perceptual Motor Program (PMP) which systematically introduced a range of physical developmental skills for young children. As an example, I am convinced that if a child does not have a sense of balance (equality) such as one would gain on a see-saw or a balance beam, this lack of an internal sense of equality will hinder the development of “equalness” understanding in mathematics. I believe a great deal of thought needs to be given to the developmental relationship between the physical and the mathematical being. It is more than being able to “graze” (nibble) when needed, even though that is one vital aspect of overall child health in the classroom.

Thinking skills - in mathematics education we can call it “working mathematically” - is a vital and exciting aspect of any thriving classroom.

Imagine! Children are taught no formal arithmetic for the first six years of their primary school life.
Jane Healy, educator, scholar and experienced educational psychologist, hits home with a no-nonsense assessment of the roots of a major crisis in schooling - why today's children are less able to concentrate, less able to absorb, etc. - a comment expressed widely in many circles. When first introduced to Endangered Minds, I was skeptical but it did not take long for Healy's erudite and clear scientific knowledge to make me look at teaching today with fresh eyes and deeper understanding. Some have said that over the past few years knowledge has out-paced Healy's work. Maybe! But, I suspect that the majority of our teaching practices have yet to recognise her most important message that the developmental relationship between language, learning and brain development is being sabotaged by electronic over-exposure.

Who would think that camels can be linked to mathematics?

The camel's hump is an ugly lump.
Which well you see at the zoo.
But, uglier yet is the hump we get
For having too little to do.

So wrote Rudyard Kipling over 100 years ago as an after-word to his famous story How the camel got its hump in the whimsical book, Just So Stories.

Camels have an involvement in Australian history dating back to 1840 when 3 camels were brought to the country. By 1922, it was estimated there were about 12 000 in the working camel population and today it is thought that more than 20 000 roam inland Australia.

Links or starting points for thinking
For the Burke and Wills expedition 24 camels were imported. (Interestingly, an archeological study is attempting to prove a collection of bones is the remains of a camel which was killed for food on this expedition.)

Thomas Elder imported 1 200 camels to South Australia in 1866. In 1890, it was estimated there were more than 500 camels and their Afghan drivers serving the gold explorations around Kalgoorlie.

Why do camel wagons have such large wheels? Hint: careful study of a circle will give you a clue.

Why did Henry Ford’s Model T car have large wheels and the Mini-Minor (Cooper) have such small wheels?

Who said?*
Let the children reinvent arithmetic . . . Since there is absolutely nothing arbitrary in logico-mathematical knowledge, children are bound to find the truth if they argue long enough.

Until you work it out for yourself, two times two makes four only because the teacher says so.

More on Latitude
Does Perth have a higher latitude than Sydney? There is just about one degree difference between Adelaide and Sydney: what does that mean? I discovered a most comprehensive website at www.csu.edu.au/australia or type Guide to Australia into Google and spend hours discovering. As well, you can obtain detailed driving directions between various towns in the country.

How old am I?
I am _____ years old.
33 + 22 + 11
3.3 score
7² + 4² +1²
264 ÷ 4 or
66% of 100

Got the idea? Children never give a direct solution to a problem: it needs to be "coded" in other numerical terms.

Hope there is not a catch?
Preparing for my next Space workshop, I explored Geo Australia where I found a link to www.tagteacher.net. Well worth the visit, for I discovered a list of sites which could be used for educational purposes. From there, I explored, exploratorium - to discover a huge range of inspirational ideas. Have a look; it’s worth spending the time! www.exploratorium.com
Innovative education for educators

The MLATS professional presentation team addresses the needs of teachers working with students from 4 to 15 years of age. Courses provide a collaborative framework, enabling teachers to engage with, and reflect on, significant ideas related to the teaching and learning of mathematics and the development of numeracy. Constructivist in nature, the workshops are aimed to strengthen the knowledge, hence confidence, of participants and are designed to provide successful strategies in educational practice.

Karen Albrechtsen 0413 132 127
Email: mail@mlats.com.au
Fax: 08 8370 4082
Mail: 48 York Drive
Flagstaff Hill, SA 5159

MLATS sell books and teachings aids and have a comprehensive list of recommended readings, materials and children’s literature that are available through our suppliers.

Here are some ideas for Courses available. For a more comprehensive list, please refer to the Course Guide which is also available from our website www.mlats.com.au

MLATS Core Course
MLATS How to use… Series
MLATS Learning and teaching… Series
MLATS Strategies to Support Learning… Series
MLATS in the Preschool
MLATS for Parents 1 & 2
MLATS in the Classroom
MLATS Intervention Program
Developing Numeracy through Literature

Contact us now to discuss your Training and Development requirements or to obtain a registration form.
We also conduct Whole School workshops and training courses